
Comparing different interpolation methods on
two-dimensional test functions

Thomas Mühlenstädt, Sonja Kuhnt

May 28, 2009

Keywords: Interpolation, computer experiment, Kriging, Kernel inter-
polation, Thin plate spline, Natural neighbor interpolation.

Introduction

In the context of computer experiments a common way of dealing with ex-
pensive simulation models is to evaluate the simulation at a number of well
designed input values and to replace the simulation by an easy to calculate
surrogate model. Then the surrogate model is used for optimization, sen-
sitivity analysis or other applications at hand. The surrogate model has to
interpolate the observations as there is usually no random error for computer
experiments. There exist different multivariate interpolation methods which
can be applied as surrogate model. The aim here is to provide a comparison of
four of these: Kriging, Kernel interpolation, Natural neighbor interpolation
and Thin plate splines.

The article is organized as follows: After a short review of the four in-
terpolation methods, in Section 2 details of the chosen designs are explained
and the interpolation methods are compared to each other in Section 3. A
summary concludes our article.

1 Interpolation methods

Let ~x1, . . . , ~xn denote the design D of the input variables with ~xi = (xi,1, xi,2)
′

and let y1, . . . , yn be observations of a one dimensional output variable.
Kriging is the standard approach to model the output of non-random

computer experiments [Fang et al. (2006)]. The assumed model is given by

Y (~xi) = gβ(~xi) + Z(~xi), 1 ≤ i ≤ n, (1)

1

with Z = (Z(~x1), . . . , Z(~xn)) being a normally distributed random vector
with zero mean and covariance matrix σ2Γ, σ2 > 0. In this paper gβ(~x)
is assumed to be constant over the design space: gβ(~x) = β ∈ R. The
correlation matrix depends on the distance between two input points ~x1 and
~x2. In order to interpolate the data, the correlation between two observations
must equal 1 if ~x1 = ~x2. We use the following correlation function:

cor(Z(~xi), Z(~xi′)) = exp

(
−

2∑
d=1

θi |xi,d − xi′,d|2
)

. (2)

The parameter vector ~θ needs to be estimated from the data, which is done
by REML estimation. The loglikelihood is optimized in a similar manner to
the algorithm described by Fang et al. (2006), p. 149. The optimization is
repeated for a number of different initial values. Kriging is applied in many
practical situations and is well known for it’s high prediction accuracy.

As an alternative to Kriging [Mühlenstädt and Kuhnt (2009)] just recently
suggested Kernel interpolation(KI). First the Delaunay triangulation of the
design is determined. For every simplex Sj in the triangulation, a linear
function ŷj(~x) is fitted to the vertices of the simplex. Locally these give
reasonable fits to the data. In order to obtain one global fit ŷ(~x), the local
fits are combined by a weighted average:

ŷ(~x) :=

{
yi, ~x = ~xi, i = 1, . . . , n;∑N

j=1 gj(~x)ŷj(~x)∑N
j′=1 gj′ (~x)

, elsewhere,
(3)

with N being the number of simplices. Here we use the weight function

gj(~x) =
1

(
∏2

i=0 ‖~x− ~xj
i‖2)2

, (4)

where ~xj
i are the vertices of simplex Sj. The function ŷ(~x) is continuous and

differentiable (see Mühlenstädt and Kuhnt (2009)). This new approach is
combining two methods of interpolation: Piecewise linear interpolation and
inverse distance weighting, which are both not very competitive on their own.

Thin plate splines (TPS) [Micula (2002)] are a multivariate extension of
natural cubic splines. A Thin plate spline is a function f ∗ minimizing

I(f) =

∫
R2

(
∂2f(~x)

∂x2
1

)2

+ 2

(
∂2f(~x)

∂x1∂x2

)2

+

(
∂2f(~x)

∂x2
2

)2

d~x (5)

in a suitable functional space under the constraint of interpolation. The
solution is a special case of interpolation using radial basic functions:

f ∗(~x) =
n∑

i=1

λiφ(‖~x− ~xi‖2) + λn+1 + λn+2x1 + λn+3x2, (6)

2

with φ(r) = r2log(r). The parameters λ1, . . . , λn+3 can be calculated by a
system of linear equations.

Natural neighbor interpolation (NNI) was proposed by [Sibson (1980)]
and is predicting by a weighted average of the observations. The i-th weight
for the prediction at ~x is determined by the (scaled) Lebesgue measure of the
intersection of the Voronoi cell of ~xi w.r.t. ~x1, . . . , ~xn(i.e. the data without
~x) and the Voronoi cell of ~x w.r.t. ~x and ~x1, . . . , ~xn.The points ~xi which have
a non-zero weight are called the natural neighbors of ~x. We include natural
neighbor interpolation in our study as it is a strictly local method.

2 Designs

We employ three different kinds of designs to evaluate whether or not the
performance of the interpolation methods depend on the data structure. As
an example of a well designed computer experiment we consider maximin
latin hypercube designs according to Morris and Mitchell (1995). The corre-
sponding optimality criterion for this kind of design is

Φ25(D) =

(
n∑

i=1

n∑
j=i+1

1

‖~xi − ~xj‖25
2

)1/25

. (7)

Simulated annealing is applied for searching designs which minimize this
criterion. Designs with sample sizes n = 10, 20, 30 are constructed.
Although regular grids are not considered to be first choice for computer
experiments due to their poor projection properties, it might well be that
the data at hand come from a full factorial design as full factorial designs
are often D-optimal designs w.r.t. higher order models. Here full factorials
with sample size n = 9, 16, 25, 36 are considered.
For the last class of designs a random latin hypercube design is constructed
and some additional two-dimensional beta-distributed observations are added
to the design. The beta distributions are constructed such that there are
clusters in the input design. This may reflect two different situations: Firstly
the situation of a random sample of design points. Secondly this can be the
result of an optimization process where first a space filling design has been
chosen and afterwards promising areas of the design space are analyzed by
additional design points. All designs are plotted in Figure 1.

3

Figure 1: Designs used for comparison: Maximin latin hypercube, full facto-
rial, random design with clusters.

3 Comparison

In order to judge the fit of an interpolator, the root mean square error is
used:

RMSE(y, ŷ, ~r1, . . . , ~rn) :=

√√√√ n∑
i=1

(y(~ri)− ŷ(~ri))2. (8)

We always used 10000 points of a Sobol’ uniform sequence for calculating
the RMSE. In order to have comparable RMSE values, all functions f(~x)
have been scaled such that min f = 0 and max f = 1. The most simple
method to implement is the TPS, as it mainly consists of solving a system
of linear equations of order n + 3. The implementation of Kriging and KI
are of comparable complexity if an optimization algorithm (for Kriging) and
an algorithm for the computation of the Delaunay triangulation (for KI)
are available. Although NNI is conceptually simple it is by far the most
complicated method to implement, as implementing the Voronoi diagram
efficiently is demanding. The computation times for 10000 points of the
Sobol’ sequence for each interpolation method based on the three Maximin
designs are shown in Table 1. For the other designs the computation times
are comparable. NNI is by far the most expensive surrogate in terms of
computation time. For Kriging, the computation times differ depending on
the example considered as the optimization of the restricted log-likelihood
strongly depends on the sample data set. The optimization has been repeated

4

50 times with different initial values for each data set. Once the correlation
parameters are estimated, the Kriging prediction is very fast.

Design TPS KI Kriging NNI
DMm

10 10 15 13 - 22 839
DMm

20 13 27 69 - 162 1536
DMm

30 15 39 178 - 448 2239

Table 1: Computation times for the prediction of 10000 points based on the
Maximin latin hypercube designs in seconds.

The first considered function comes from one of our mechanical engineer-
ing projects. The output represents the die force in sheet metal forming
which depends on friction and blankholder force:

f(x, y) = 0.9996(1090.91 + 4xy) exp (x
π

2
), D = [0.05, 0.2] × [5, 30]. (9)

Figure 2: Contour plots.

This function is mainly a linear function in one variable, as can be seen by
its contour plot in Figure 2. It is included, as a minimum requirement to an
interpolation method is, that it is very precisely reproducing simple functions.
The RMSE results are shown in Figure 3. Here TPS and KI delivered
comparable results for all designs. Kriging is delivering by far the best fit
(numerically a perfect fit) except for the 32 design, for which the optimization
of the likelihood delivered relatively large correlation parameters. For all
three kinds of designs, the RMSE for NNI was magnitudes away from the
results of the other methods, showing that the NNI fit has been very poor.
A function often used as example in optimization is the Hump function [Wang
and Chen (1996)]:

f(x, y) = 1.0316 + 4x2 − 2.1x4 +
1

3
x6 + xy − 4y2 + 4y4, D = [−5, 5]2 (10)

5

Here (and for all remaining functions) there is not one method which outper-
forms the other methods by magnitudes. For small sample sizes, TPS and
KI deliver the best results, while Kriging performs better for larger sample
sizes. NNI is the worst method w.r.t. the RMSE for most of the designs for
the Hump function.
The Matlab’s peaks function is an example of a very ’hilly’ contour with
several local optima:

f(x, y) = 3(1− x)2 exp(−x2 − (y + 1)2)− 10(
x

5
− x3 − y5) exp(−x2 − y2)

− 1

3
exp(−(x + 1)2 − y2), D = [−2, 2]2 (11)

Here Kriging performs best for the designs with higher sample sizes and for
the random design. For the smaller sample sizes of the full factorial and the
Maximin LHD, the performance of the methods vary: For the smaller sample
size, Kriging performed comparable (full factorial) or worse (Maximin LHD)
than KI and TPS. For higher sample sizes, Kriging is better than KI and
TPS, whereas NNI again delivers the poorest fit.

Most of the examples in literature are smooth functions. However, this
does not necessarily need to be the case. Therefor we include a function in
this simulation study, which is continuous but not differentiable:

f(x, y) = |x2 + sin (0.5πy) − y|, D = [0, 1]2. (12)

None of the methods fail completely. As for the other examples KI and TPS
perform comparable most of the times and NNI performs poor compared to
the best method. Kriging performs good except for the Maximin LHD with
n = 20 and for the 32 design. For the random designs with clusters, the TPS
achieves the best RMSE value for all 3 sample sizes.
Sibson (1980) uses the following function in order to demonstrate NNI :

f(x, y) = cos(4π
√

(x− 0.25)2 + (y − 0.25)2), D = [0, 1]2 (13)

This function has a complexity, which is too high for the smaller sample sizes.
This function is included, as it is realistic that the computer experiment might
have a higher complexity than expected. In such a situation the fit is more
like an approximation than an interpolation, which is reflected by the fact,
that the RMSE is very high compared to the other examples. Here Kriging
gives an inconsistent result: For the Maximin LHD, it has the poorest RMSE
value despite of the largest sample size, whereas for the random design, it
performs best for all sample sizes. Sibson’s function is the only one, where
NNI performed best w.r.t. the RMSE for several designs.

6

4 Summary

In this paper we compared well-known and new interpolation methods based
on the simulations. Several conclusions can be drawn: There is not one
overall winner for every situation. Kriging often performs very well, although
it may fail for small sample sizes. Thin plate splines and Kernel interpolation
most of the times perform comparable and, especially for small sample sizes,
even better than Kriging. For most of the examples, NNI has delivered
the poorest fit w.r.t. the RMSE and is at the same time computationally
intensive. Hence we recommend not to use NNI. Maximin designs give the
best fit among all considered designs, which confirms considering Maximin
LHD as a good way to design computer experiments. For the random design
with clusters, Kriging seems to be the method which performs best under
this kind of data. All in all, for small sample sizes, it seems to be reasonable
to use KI or TPS, whereas for higher sample size, Kriging is the best choice.

Acknowledgement

The financial support of the DFG (research training group Statistical Mod-
elling, SFB 708) is gratefully acknowledged.

References

Fang, K.-T., Li, R., and Sudjianto, A. (2006). Design and Modeling for Com-
puter Experiments. Computer Science and Data Analysis Series. Chapman
& Hall/CRC, Boca Raton.

Mühlenstädt, T. and Kuhnt, S. (2009). Kernel interpolation. Technical
report, Faculty of Statistics, Technische Universität Dortmund, Dortmund,
Germany.

Micula, G. (2002). A variational approach to spline functions theory. General
Mathematics, 10(1):21–50.

Morris, M. and Mitchell, T. (1995). Exploratory designs for computational
experiments. Journal of Statistical Planning and Inference, 43:381–402.

Sibson, R. (1980). A brief description of natural neighbor interpolation. In
Barnett, V., editor, Interpreting multivariate data, pages 21–36. Wiley.

Wang, P. and Chen, D.-S. (1996). Continuous optimization by a variant of
simulated annealing. Computational Optimization and Applications, 6:59–
71.

7

Figure 3: RMSE comparisons for all example functions.

8

